COMPETENCY BASED QUESTIONS
 Class 11
 Physics

1. A ball is projected with velocity $10 \mathrm{~m} / \mathrm{sec}$ at angle of 30° with the horizontal surface. The range of the projectile is
a. 10 m
b. $10 \sqrt{ } 3 \mathrm{~m}$
c. $20 \sqrt{3} \mathrm{~m}$
d. $30 \sqrt{ } 3 \mathrm{~m}$
e. $5 \sqrt{ } 3 \mathrm{~m}$
2. The angle of projection for the range of projectile to be equal to its maximum height is
a. $\theta=\tan ^{-1}$ (2)
b. $\theta=\tan ^{-1}(3)$
c. $\theta=\tan ^{-1}$ (4)
d. $\theta=\tan ^{-1}(2 / \sqrt{ } 3)$
e. $\theta=\tan ^{-1}(1 / \sqrt{ } 3)$
3. An object of mass 2000 g covers a maximum vertical distance of $\mathbf{6 m}$ when it is projected at an angle of 45° from the ground. Calculate the velocity with which it was thrown. Take $\mathrm{g}=10 \mathrm{~m} / \mathrm{s} 2$,
a. $12.10 \mathrm{~m} / \mathrm{s}$
b. $15.49 \mathrm{~m} / \mathrm{s}$
c. $2.155 \mathrm{~m} / \mathrm{s}$
d. $12.0 \mathrm{~m} / \mathrm{s}$
4. The velocity v of a particle depends upon the time ' t ' according to the equation

$$
\mathrm{v}=\sqrt{a b}+\mathrm{bt}+\frac{c}{d+t}
$$

Determine the units of $\mathrm{a}, \mathrm{b}, \mathrm{c}$ and d . What physical quantities they represent.
5. Find dimensions of constants a and b in equation.
$\left(\mathrm{P}+\frac{a}{\mathrm{~V} 2}\right)(\mathrm{V}-\mathrm{b})=\mathrm{RT}$, where P is pressure and V is volume, R is universal gas constant, T is temperature.
6. A stone falls from a cliff and travels 24.5 m in the last second before it reaches the ground at the foot of the cliff. Find the height of the cliff.
7. The displacement x of a particle varies with time as

$$
x=4 t^{2}-15 t+25
$$

Find the velocity and acceleration of the particle at $t=0$. When will the velocity of the particle become zero? Name the type of motion the particle is executing.
8. The escape velocity v of a body depends upon the acceleration due to gravity of a planet g and the radius of the planet R. Establish dimensionally the relation between v, g and R.
9. Why does not a heavy gun kick so strongly as a light gun using the same bullets (i.e. cartridges)?
10. A pebble of mass 0.05 kg is thrown vertically upwards. Give the direction and magnitude of the net force on the pebble,
(a) during its upward motion, .
(b) during its downward motion,
(c) at the highest point where it is momentarily at rest. Do your answers change if the pebble was thrown at an angle of 45° with the horizontal direction? Ignore air resistance.
11. What is the angle between $\hat{\imath}+\hat{\jmath}$ and $\hat{\imath}$ vectors?
12. What must be the value of ' a ' in $2 \hat{\imath}+2 \hat{\jmath}-a \hat{k}$ so that it is perpendicular to $5 \hat{\imath}+7 \hat{\jmath}-3 \hat{k}$?

